

| Effective from Session: 2020-21 |                                                  |                                                                                   |                                                                                                                                                                       |                   |                     |                   |            |
|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|-------------------|------------|
| Course Code                     | BE501                                            | Title of the CourseBiochemistryLTP                                                |                                                                                                                                                                       |                   |                     |                   |            |
| Year                            | 1 <sup>st</sup>                                  | Semester                                                                          | 1 <sup>st</sup>                                                                                                                                                       | 2                 | 1                   | 0                 | 3          |
| Pre-Requisite                   | None                                             | Co-requisite                                                                      | None                                                                                                                                                                  |                   |                     |                   |            |
| Course Objectives               | This course i<br>carbohydrates<br>courses like n | is designed to introduc<br>s, proteins, lipids, enzyn<br>hysiology, cell biology, | e the organic structure of living systems mainly dealing<br>nes and their metabolism. This course will lay the founda<br>molecular biology and metabolic engineering. | with b<br>tion fo | piomole<br>or other | cules l<br>advanc | ike<br>:ed |

|     | Course Outcomes                                                                                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | The students will learn about the carbohydrate metabolism, and its regulation; understand how the body meets the carbohydrate                 |
|     | requirements, and how the carbohydrate metabolism is essential for synthetic pathways of other biomolecules.                                  |
| CO2 | The students will learn about structure and metabolism of lipids, and proteins in body.                                                       |
| CO3 | The students will understand about the mechanism and regulation of nucleotide synthesis and degradation.                                      |
| CO4 | The course will aid the students in understanding other courses such as cell and molecular biology, immunology. This course will also lay the |
|     | foundation for other advanced courses like metabolic engineering and bioprocess engineering.                                                  |

| Unit<br>No. | Title of the Unit                                                    | Content of Unit                                                                                                                                                                                                                                  | Contact<br>Hrs. | Mapped<br>CO |  |  |  |
|-------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|
| 1           | Carbohydrates                                                        | Structure and properties of mono, di, oligo and polysaccharides; complex carbohydrates, TCA cycle, glycolysis, gluconeogenesis, pentose phosphate shunt. Respiratory chain, ATP cycle, energy rich compounds.                                    | 8               | CO1          |  |  |  |
| 2           | Lipids                                                               | Structure and properties of fatty acids, Glycerolipids, phospholipids, sphingolipids, Glycolipids, steroids. Biosynthesis and degradation of fatty acids and cholesterol.                                                                        | 8               | CO2          |  |  |  |
| 3           | Proteins                                                             | Structure and properties of amino acids, peptides, proteins and conjugated proteins. Urea cycle. Biosynthesis and degradation of amino acids and proteins.                                                                                       | 8               | CO3          |  |  |  |
| 4           | Nucleic Acids                                                        | Structure and properties of purines, pyrimidines, nucleosides, nucleotides, polynucleotides.<br>Ribonuclic acid and deoxyribonucleic acids, nucleoprotrein complexes. Biosynthesis and<br>degradation of purines, pyrimidines and nucleic acids. | 8               | CO4          |  |  |  |
| Referen     | ce Books:                                                            |                                                                                                                                                                                                                                                  |                 |              |  |  |  |
| 1. Nel      | 1. Nelson & Cox, Lehninger's Principles of Biochemistry, 5th Edition |                                                                                                                                                                                                                                                  |                 |              |  |  |  |
| 2. Har      | 2. Harpers Biochemistry, McGraw Hill                                 |                                                                                                                                                                                                                                                  |                 |              |  |  |  |
| 3. Stry     | 3. Stryer, Biochemisrty, Freeman.                                    |                                                                                                                                                                                                                                                  |                 |              |  |  |  |

4. Donald Voet, J.G.Voet, Biochemistry, John Willey. Voet & Voet, "Biochemistry".

#### e-Learning Source:

https://drive.google.com/file/d/1t-tMP3OZ03KCQDR1dxDgfxa2mOd6ZkOh/view?usp=sharing

|            |     |     |     |     |     | Course | e Articu | ilation | Matrix: ( | Mapping of | of COs with | h POs and P | SOs) |      |      |
|------------|-----|-----|-----|-----|-----|--------|----------|---------|-----------|------------|-------------|-------------|------|------|------|
| PO-<br>PSO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6    | PO7      | PO8     | PO9       | PO10       | PO11        | PO12        | PSO1 | PSO2 | PSO3 |
| CO         |     |     |     |     |     |        |          |         |           |            |             |             |      |      |      |
| CO1        | 3   | 3   | 2   | 3   |     | 1      | 1        | 1       |           |            |             | 3           | 1    | 2    | 2    |
| CO2        | 3   | 3   | 2   | 3   |     | 1      | 1        | 1       |           |            |             | 3           | 2    | 2    | 2    |
| CO3        | 3   | 3   | 2   | 3   |     | 1      | 1        | 1       |           |            |             | 3           | 2    | 2    | 2    |
| CO4        | 3   | 3   | 2   | 3   |     | 1      | 1        | 1       |           |            |             | 3           | 2    | 2    | 2    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: |                                               |                                                                           |                                                                                                                                                              |                  |        |                     |              |
|-------------------------|-----------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|---------------------|--------------|
| Course Code             | BE 502                                        | Title of the Course                                                       | Bioanalytical Techniques                                                                                                                                     | L                | Т      | Р                   | С            |
| Year                    | Ι                                             | Semester                                                                  | Ι                                                                                                                                                            | 3                | 1      | 0                   | 4            |
| Pre-Requisite           | None                                          | Co-requisite                                                              | None                                                                                                                                                         |                  |        |                     |              |
| Course Objectives       | The paper winter instruments in techniques in | ill help students to acq<br>ike HPLC, FACS, GL<br>biological research and | uaint with basic instrumentation, principle and procedure<br>C and NMR etc. This will enable the students to impli-<br>in discovering new products/compounds | of var<br>lement | the us | phistic:<br>e of th | ated<br>hese |

|     | Course Outcomes                                                                                                                             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | The students will acquaint with basic principle, procedure and applications of centrifugation.                                              |
| CO2 | Students will become familiar with the principle, procedure and applications of various electrophoresis and chromatography techniques. This |
|     | will enable the students to implement the use of these techniques in biological research and in discovering new products/compounds.         |
| CO3 | The students will be acquainted with basic instrumentation, principle and procedure of various sophisticated spectroscopy and microscopy    |
|     | instruments.                                                                                                                                |
| CO4 | The students will get the knowledge of Radiotracer Technology and their practical implications.                                             |
| CO5 | Students will become familiar with the principle, procedure and applications of various analytical techniques required for environmental    |
|     | monitoring.                                                                                                                                 |

| Unit<br>No. | Title of the Unit                                                            | Content of Unit                                                                                                                                                                                                                                                                                                                                                                       | Contact<br>Hrs. | Mapped<br>CO |  |  |  |
|-------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|
| 1           | Centrifugation                                                               | Centrifugation: types of rotors; principles and application of differential, zonal, density gradient and ultra-centrifugation.                                                                                                                                                                                                                                                        | 8               | CO1          |  |  |  |
| 2           | Electrophoresis<br>and<br>Chromatography                                     | Electrophoresis: principles and applications of moving boundary and zone electrophoresis<br>including gel electrophoresis (PAGE, starch, agarose and Pulse Field gel<br>Electrophoresis), isoelectric focusing, isotachophoresis; Chromatography: Adsorption,<br>partition, ion-exchange, reverse phase, covalent, gel filtration, affinity, gas<br>chromatography,<br>HPLC and FPLC. | 8               | CO2          |  |  |  |
| 3           | Spectroscopy and<br>Microscopy                                               | Basic Principles of Spectroscopy: UV-visible, atomic absorption, ESR, NMR, IR, mass and plasma emission spectroscopy. Microscopy: Simple, compound, phase contrast, electron (transmission, scanning) and confocal microscopy.                                                                                                                                                        | 8               | CO3          |  |  |  |
| 4           | Radiotracer<br>Technology                                                    | Radiotracer technology, use of radioactive isotopes in biological system; autoradiography,<br>Geiger-Muller counter, Liquid scintillation counter; CD;ORD;X-ray crystallography;<br>Biosensors; Flow cytometer; Freeze<br>drying; Amino acid analyzer.                                                                                                                                | 8               | CO4          |  |  |  |
| 5           | Environmental<br>Analytical<br>Techniques                                    | Analysis of Biomass; measurement of dry weight and biomass composition; Measurement of BOD and COD in Waste-Waters; Gas Analysis for O2 and CO2; Flow injection analysis                                                                                                                                                                                                              | 8               | CO5          |  |  |  |
| Referen     | ce Books:                                                                    |                                                                                                                                                                                                                                                                                                                                                                                       |                 |              |  |  |  |
| 1.          | Wilson K, Walker J, W                                                        | alker JM, "Principles and Techniques of Practical Biochemistry".                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |
| 2.          | Sambrook J, Russell D                                                        | W, Sambrook J, "Molecular Cloning: A Laboratory Manual".                                                                                                                                                                                                                                                                                                                              |                 |              |  |  |  |
| 3.          | 3. Cantor CR, Schimme IPR, "Biophysical Chemistry".                          |                                                                                                                                                                                                                                                                                                                                                                                       |                 |              |  |  |  |
| 4.          | 4. Lehninger A, "Principles of Biochemistry                                  |                                                                                                                                                                                                                                                                                                                                                                                       |                 |              |  |  |  |
| e-Leai      | rning Source:                                                                |                                                                                                                                                                                                                                                                                                                                                                                       |                 |              |  |  |  |
| https:/     | https://drive.google.com/drive/u/0/folders/181gGJZiE1hkxsIGZiHyUBhX3AYhFs4DG |                                                                                                                                                                                                                                                                                                                                                                                       |                 |              |  |  |  |

|        |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |        |          |         |          |          |        |            |            |      |      |      |      |
|--------|-----|----------------------------------------------------------------|-----|--------|----------|---------|----------|----------|--------|------------|------------|------|------|------|------|
| PO-PSO | PO1 | PO2                                                            | PO3 | PO4    | PO5      | POG     | PO7      | PO8      | POQ    | PO10       | PO11       | PO12 | PSO1 | PSO2 | PSO3 |
| СО     | 101 | 102                                                            | 105 | 104    | 105      | 100     | 107      | 108      | 109    | 1010       | 1011       | 1012 | 1301 | 1302 | 1505 |
| CO1    | 3   | 3                                                              | 3   | 2      | 3        | 2       | 2        | 1        | 1      | 1          | 1          | 2    | 3    | 2    | 3    |
| CO2    | 3   | 3                                                              | 3   | 2      | 3        | 2       | 2        | 1        | 1      | 1          | 1          | 2    | 3    | 3    | 3    |
| CO3    | 3   | 3                                                              | 3   | 2      | 3        | 2       | 2        | 1        | 1      | 1          | 1          | 2    | 3    | 3    | 2    |
| CO4    | 3   | 3                                                              | 3   | 3      | 3        | 2       | 2        | 1        | 1      | 1          | 1          | 2    | 3    | 3    | 2    |
| CO5    | 3   | 3                                                              | 3   | 3      | 3        | 2       | 2        | 2        | 1      | 1          | 1          | 2    | 3    | 3    | 2    |
|        |     |                                                                | 1   | Low Co | molation | · 2 Mad | amoto Co | malation | . 2 Ch | stantial C | annalation |      |      |      |      |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: |                                                  |                                                                          |                                                                                                                         |                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|-------------------------|--------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Course Code             | BE503                                            | Title of the Course                                                      | Microbial Genetics & Technology                                                                                         | L                 | Т                  | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С           |
| Year                    | Ι                                                | Semester                                                                 | Ι                                                                                                                       | 2                 | 1                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3           |
| Pre-Requisite           | None                                             | Co-requisite                                                             | None                                                                                                                    |                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Course Objectives       | The course is<br>also focus or<br>industrial app | designed to understand<br>the media design, mo<br>lications of microbes. | I the basics of microbial growth, reproduction, methods of<br>des of operation of fermenter for large scale biomass and | genetic<br>1 prod | exchar<br>uct forr | nge. It with the second s | will<br>and |

|     | Course Outcomes                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| CO1 | Students are able to design media, sterilization procedure for the growth of micro-organisms for industrial applications |
| CO2 | Large scale production of valuable microbial metabolites and ability to decide the best culture system.                  |
| CO3 | Students are capable of explaining process involved in genetic exchange in prokaryotes.                                  |
| CO4 | An ability to isolate, maintain, preserve and genetically modify microorganisms for various applications                 |

| Unit<br>No.                                                                                                                                             | Title of the Unit                                                                                                                                                                                | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contact<br>Hrs. | Mapped<br>CO |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|
| 1                                                                                                                                                       | Microbial<br>Nutrition and<br>Growth                                                                                                                                                             | Principle of microbial nutrition, formulation of culture media, selective media, factors influencing the choice of various carbon and nitrogen sources, vitamins, minerals, precursors & antifoam agents; Importance of pH; Starter culture; Principles of media and air sterilization; kinetics of thermal death of cells & spores, design of batch and continuous thermal sterilizer, sterilization of air, design of filter; Radiation, chemical and steam sterilization.              | 8               | CO1          |  |  |  |
| 2                                                                                                                                                       | Microbial growth<br>kinetics under<br>different culture<br>systems                                                                                                                               | Kinetics of microbial growth, substrate utilization and product formation: growth phases of a batch culture, synchronous culture, determination of kinetic parameters by batch, fed batch and continuous culture; Analysis of chemostat performance. Kinetics of growth & product formation by filamentous organisms; Role of maintenance and endogenous metabolism in substrate utilization & growth; structured models: Compartmental models; Gaden's and Deindoerfer's classifications | 8               | CO2          |  |  |  |
| 3                                                                                                                                                       | Applied Microbial<br>Genetics                                                                                                                                                                    | Horizontal gene transfer (Conjugation, transduction and transformation), Complementation,<br>Molecular recombination, Mapping of bacterial genes; Genetic and physical maps;<br>Replication of RNA tumor viruses                                                                                                                                                                                                                                                                          | 8               | CO3          |  |  |  |
| 4                                                                                                                                                       | Microbial<br>Technology                                                                                                                                                                          | Microbial       Isolation, maintenance and preservation of industrial strains. Strain improvement, screening and selection of industrially important microbes. Large scale production and commercial applications of enzymes: proteases and amylases ; solvents and antibiotics: acetic acid, ethanol acetobutanol penicillin and streptomycin                                                                                                                                            |                 |              |  |  |  |
| Referen                                                                                                                                                 | ce Books:                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |              |  |  |  |
| 1.         B           2.         S           3.         ""           4.         M           5.         S           6.         A           7.         C | ailey J E and Ollis DF, "<br>tanbury PF, Whitaker A,<br>Principles of Cell Energe<br>Ioser A, "Bioprocess Tec<br>chugerl K, "Biotechnolog<br>tkinson B, Mavituna F, '<br>boodenough U, "Genetics | Biochemical Engineering fundamentals".<br>"Principles of Fermentation Technology".<br>tics": BIOTOL series, Butterworth - Heinemann.<br>chnology - Kinetics & Reactors".<br>gy" Vol.4 Meaning Modeling and Control.<br>'Biochemical Engineering and Biotechnology Handbook".<br>".                                                                                                                                                                                                        |                 |              |  |  |  |

e-Learning Source:

| PO-PSO | PO1 | PO2 | PO3 | PO/ | PO5 | PO6 | PO7 | PO8 | POQ | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO     | 101 | 102 | 105 | 104 | 105 | 100 | 107 | 100 | 10) | 1010 | 1011 | 1012 | 1501 | 1502 | 1505 |
| CO1    | 1   | 1   | 1   | 2   | 2   | 2   | 2   | 2   | 3   | 2    | 2    | 3    | 2    | 1    | 3    |
| CO2    | 1   | 1   | 1   | 2   | 2   | 2   | 2   | 2   | 3   | 2    | 2    | 3    | 2    | 1    | 3    |
| CO3    | 1   | 1   | 1   | 1   | 2   | 2   | 2   | 2   | 3   | 1    | 1    | 3    | 2    | 1    | 3    |
| CO4    | 1   | 1   | 1   | 1   | 2   | 2   | 2   | 2   | 3   | 1    | 1    | 3    | 2    | 1    | 3    |
| CO5    | 1   | 1   | 1   | 1   | 2   | 2   | 2   | 2   | 3   | 1    | 1    | 3    | 2    | 1    | 3    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: 2021-22 |                                 |                                                                                                                                                                                                                             |                            |   |   |   |   |  |  |
|---------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---|---|---|---|--|--|
| Course Code                     | BE504                           | Title of the Course                                                                                                                                                                                                         | Cell and Molecular Biology | L | Т | Р | С |  |  |
| Year                            | Ι                               | Semester                                                                                                                                                                                                                    | I                          | 3 | 1 | 0 | 4 |  |  |
| Pre-Requisite                   | None                            | Co-requisite                                                                                                                                                                                                                | None                       |   |   |   |   |  |  |
| Course Objectives               | The objective of the course for | he objective of the course is learning and understanding the fundamentals of molecular biology and cellular signalling. The appli f the course focuses on fundamental concepts and their implications on discase processes. |                            |   |   |   |   |  |  |

|     | Course Outcomes                                                                                                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Describe the general principles of gene organization and expression in both prokaryotic and eukaryotic organisms and replication of genome |
| CO2 | Discuss the various levels of gene regulation and expression                                                                               |
| CO3 | Explain the basic pathways of protein function, folding and targeting                                                                      |
| CO4 | Relate properties of cancerous cells to mutational changes in gene function.                                                               |
| CO5 | Relate different signal transduction pathways and cell cycle control with disease pathogenesis.                                            |
|     | Understanding of protein kinases as primary elements in signalling.                                                                        |

| Unit<br>No.       | Titl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e of the L  | J <b>nit</b> |                                                                             |                                              |                                                 |                                               | Cont                                    | tent of Un                           | uit                                       |                                                            |                                            |                                      | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-----------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------------------------|--------------------------------------------|--------------------------------------|-----------------|--------------|--|--|--|--|--|
| 1                 | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A Replica   | tion         | Initiation,<br>Topoison<br>polymeras<br>replication                         | elongationerases, Prose I and<br>r; Fidelity | n and ter<br>rimase, H<br>DNA lig<br>of replica | mination;<br>elicase, H<br>gase; Euk<br>ation | Roles of<br>ID proteir<br>aryotic re    | DNA Pol<br>i; Okazak<br>plication;   | ymerase I,<br>i fragments<br>Regulatio    | II, III, DNA<br>s; RNA prin<br>n of proka                  | A ligase, DN<br>mers; Repair<br>ryotic and | IA gyrase,<br>r by DNA<br>eukaryotic | 8               | CO1          |  |  |  |  |  |
| 2                 | Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | anscripti   | on           | Prokaryot<br>polymeras<br>structure;<br>dependen<br>Maturatio<br>A tail for | CO2 CO2 CO2 CO2 CO2                          |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| 3                 | 3       Genetic code       Evidence for a triplet code; Properties of the code sequential; Ubiquitous (almost); Degenerate; Wobble hypothesis, Nonsense codons; Sense codons; Translation: Activation of amino acids; Charging of tRNA; Adapter role of tRNA; Amino acyl tRNA synthetase; Initiation, elongation and termination of translation in prokaryotes and eukaryotes; A, P and E sites of ribosomes; Roles of initiation, elongation       8       CO3         3       Genetic code       and release factors; Ribosome recycling; Post - translational processing; Protein targeting: targeting of secretory proteins - targeting to endoplasmic membrane, golgi complex, lysosomes and plasma membrane; Concept of operon; lac and tro operons       8       CO3 |             |              |                                                                             |                                              |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| 4                 | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mutation    | L            | Spontaneo<br>Frame sh<br>Transposi                                          | ous, induci<br>ift mutati<br>tion.           | ced; Cher<br>on; Supp                           | nical and<br>ressor mu                        | physical<br>atation; D                  | mutagens<br>ifferent n               | s; Non sen<br>nethods of                  | se mutation<br>DNA repa                                    | n; Missense<br>ir and SOS                  | mutation;<br>response;               | 8               | CO4          |  |  |  |  |  |
| 5                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ell Divisio | on           | Cell cycle<br>factors go<br>nucleotide                                      | and role<br>verning a<br>es, role of         | of cyclin<br>poptosis; l<br>calcium i           | depender<br>Basics of<br>signaling            | nt kinases<br>signal trar<br>g. protein | in its regunsduction:<br>hisduction: | ulation; Cel<br>G protein a<br>primary el | <ol> <li>cell intended ind phosphotements in si</li> </ol> | raction; Apo<br>olipids signal<br>gnaling. | ptosis and<br>ing, cyclic            | 8               | CO5          |  |  |  |  |  |
| Referen           | Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                                                                             |                                              |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| 1. Lew            | 1. Lewin, "Genes"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |                                                                             |                                              |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| 2. Frei           | felder DM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I, "Molecu  | ular Biolo   | gy".                                                                        |                                              |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| 3. Broy           | wn TA, "C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Genomes"    |              |                                                                             |                                              |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| 4. Wat            | son JD. "I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Molecular   | Biology      | of the Gene                                                                 |                                              |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| 5. Twy            | man R M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . "Advand   | ced Molec    | ular Biolo                                                                  | gу"<br>"                                     |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| 6. Brov           | wn TA. "C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | jene cloni  | ing: An in   | troduction                                                                  | "                                            |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| 7. Olu<br>8. Prin | wrose SB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | "Molecul    | ar Biotech   | nology"                                                                     | Julation                                     |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| 9. Cibe           | elli J B. R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | obert P. K  | eith L. M    | ichael C. V                                                                 | West D.                                      |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| 10. Vo            | et& Voct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "Biocher    | nistrv       |                                                                             |                                              |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| 11. Str           | yer L. "Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ochemist    | ry'          |                                                                             |                                              |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| e-Lear            | rning Sou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rce:        |              |                                                                             |                                              |                                                 |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
| https:/           | //www.nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bi.nlm.ni   | h.gov/pm     | c/articles/                                                                 | PMC611                                       | <u>7848/</u>                                    |                                               |                                         |                                      |                                           |                                                            |                                            |                                      |                 |              |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 1            |                                                                             | Co                                           | ourse Art                                       | iculation                                     | Matrix: (                               | Mapping                              | of COs wit                                | th POs and                                                 | PSOs)                                      |                                      |                 |              |  |  |  |  |  |
| PO-<br>PSO<br>CO  | PO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PO2         | PO3          | PO4                                                                         | PO5                                          | PO6                                             | PO7                                           | PO8                                     | PO9                                  | PO10                                      | PO11                                                       | PO12                                       | PSO1                                 | PSO2            | PSO3         |  |  |  |  |  |
| CO1               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3           | 3            | 2                                                                           | 2                                            | 1                                               |                                               |                                         |                                      |                                           |                                                            | 3                                          | 3                                    | 3               | 1            |  |  |  |  |  |
| CO2               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3           | 2            | 2                                                                           | 2                                            | 1                                               |                                               |                                         |                                      |                                           |                                                            | 3                                          | 3                                    | 3               | 2            |  |  |  |  |  |
| CO3               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3           | 2            | 2                                                                           | 3                                            | 2                                               |                                               |                                         |                                      |                                           |                                                            | 3                                          | 2                                    | 2 2 1           |              |  |  |  |  |  |
| CO4               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3           | 2            | 2                                                                           | 3                                            | 1                                               |                                               |                                         |                                      |                                           |                                                            | 3                                          | 3                                    | 3               | 1            |  |  |  |  |  |
| CO5               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3           | 2            | 2                                                                           | 3                                            | 1                                               |                                               |                                         |                                      |                                           |                                                            | 3                                          | 3                                    | 3               | 1            |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | . –          | 1- Low                                                                      | Correlati                                    | on; 2- Mo                                       | oderate C                                     | orrelation                              | n; 3- Subs                           | stantial Co                               | rrelation                                                  | -                                          | -                                    |                 |              |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nor         | no & Sim     | of Progr                                                                    | am Coor                                      | lingtor                                         |                                               |                                         |                                      |                                           |                                                            | Sign & So                                  | al of HoD                            |                 |              |  |  |  |  |  |



| Effective from Session: 2021 | 1-2022                                                              |                                                                                        |                                                                                                                                                                                                              |                                  |                      |                               |                 |
|------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|-------------------------------|-----------------|
| Course Code                  | BE505                                                               | Title of the Course                                                                    | Bioprocess Engineering                                                                                                                                                                                       | L                                | Т                    | Р                             | С               |
| Year                         | Ι                                                                   | Semester                                                                               | Ι                                                                                                                                                                                                            | 3                                | 1                    | 0                             | 4               |
| Pre-Requisite                | None                                                                | Co-requisite                                                                           | None                                                                                                                                                                                                         |                                  |                      |                               |                 |
| Course Objectives            | Students are ma<br>Students can de<br>research, food j<br>industry. | ade capable of designing provelop better understanding<br>processing, agriculture, pha | rotocols for industrial scale production of medicinally and commerce<br>and perform more efficiently in commercial as well as research are<br>armaceutical development, waste management, and numerous other | ially in<br>eas asso<br>fields o | portant<br>ociated v | metabol<br>with med<br>we and | lites.<br>lical |

|     | Course Outcomes                                                                                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Students will be capable of doing calculations in bioprocess engineering by a systematic approach with well-defined methods and rules                           |
| CO2 | Students will be able to apply mass and energy balances to calculate the concentration of different gases in the fermenter off-gas, amount of reactant used,    |
|     | amount of oxygen etc.                                                                                                                                           |
| CO3 | Fluid Mechanics plays a very vital role in Mechanical, Civil and Biotech Engineering. The study will help the students in predicting the nature of fluid and to |
|     | develop a concept for many real time problems which helps in the new developments                                                                               |
| CO4 | Study of thermodynamic properties of fluid and heat transfer operations will help the students to run the fermenter                                             |
| CO5 | Study the mass transfer operations involved in the bioreactor.                                                                                                  |

| Unit<br>No. | Title of the Unit                                                                                                 | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|
| 1           | Introduction to<br>Bioprocess and<br>Engineering<br>calculations                                                  | Role of process engineering principles in biotechnological industries, Current scenario of biotechnological industries, Dimensional analysis, Dimensionless numbers and their significance in Heat, Mass and Momentum transfer, Method/Process validation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8               | CO1          |  |  |  |  |
| 2           | Material and Energy<br>Balances                                                                                   | Steady state and unsteady state Material and Energy Balance calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8               | CO2          |  |  |  |  |
| 3           | Fluid mechanics                                                                                                   | Fluids vs solids, Fluid statics and applications including manometer; Mass and energy balances in fluid flow;<br>Bernoullis equation, its corrections and applications including pump work; Newton's law of viscosity;<br>Measurement of viscosity of fermentation broths; flow curves for Non- Newtonian fluids and examples from<br>bioprocess fluids; Pressure drop due to skin friction; Significance of friction factor and Reynold's number;<br>Boundary layer theory and form friction; Pressure drop due to form friction; Flow past immersed bodies and<br>drag coefficients; Pressure drop in flow through packed beds; Fluidization and Pressure drop across fluidized<br>beds; Flow machinery and control: overview of valves and pumps. | 8               | CO3          |  |  |  |  |
| 4           | Heat transfer                                                                                                     | Heat transfer requirements of microbial cultivations including correlations for the determination of heat transfer coefficients; Models of heat transfer and examples; Fourier's law of heat conduction and analogy with momentum transfer, heat transfer through a cylindrical pipe wall; Convection and concept of heat transfer coefficient, application of dimensional analysis to heat transfer from pipe to a flowing fluid; Thermal boundary layer and Prandtl number; Overall heat transfer coefficient; Correlations for heat transfer coefficients in natural and forced convection; Overview of heat exchangers and concept of LMTD.                                                                                                      | 8               | CO4          |  |  |  |  |
| 5           | Mass transfer                                                                                                     | Diffusion and mass transfer: Fick's law of diffusion; Analogy with momentum and energy transport; Diffusivities of gases and liquids; Fundamentals of mass transfer: Theories of mass transfer, concept of mass transfer coefficient, correlation for mass transfer coefficients, Oxygen requirements of microbial culture: oxygen mass transfer fundamentals, oxygen transfer and oxygen demand, oxygen transfer by aeration and agitation, determination of oxygen transfer coefficient by various methods including sulfite oxidation, dynamic gassing out and oxygen balance methods, factors affecting oxygen transfer coefficients.                                                                                                            | 8               | CO5          |  |  |  |  |
| Referen     | ce Books:                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |  |
| McCabe      | WL, Smith JC, Harriot                                                                                             | P, "Unit operations of Chemical Engineering", Mc Graw-Hill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |  |  |  |  |
| Cussler I   | EL, "Diffusion" Cambrid                                                                                           | lge University Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |
| Doran P.    | Doran P.M., Principle of Bioprocess Engineering. Elsevier. 2013                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |  |
| Edition,    | Edition, E. E. (2003). Transport Processes and Separation Process Principles. Christie John Geankoplis,, 932-939. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |  |
| e-Lear      | ning Source:                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |  |
| https://n   | otel.ac.in/courses/103104                                                                                         | 4043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |  |

https://onlinecourses.nptel.ac.in/noc21\_ch07/preview

|                  |     |     |     |     |     | Co  | urse A | rticula | tion M | atrix: (1 | Mappin | g of CO | s with P | Os and l | PSOs) |      |      |      |      |
|------------------|-----|-----|-----|-----|-----|-----|--------|---------|--------|-----------|--------|---------|----------|----------|-------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7    | PO8     | PO9    | PO10      | PO11   | PO12    | PSO1     | PSO2     | PSO3  | PSO4 | PSO5 | PSO6 | PSO6 |
| CO1              | 3   | 3   | 3   | 3   | 2   | 1   | 2      | 1       | 0      | 0         | 0      | 2       | 3        | 3        | 2     |      |      |      |      |
| CO2              | 3   | 3   | 3   | 3   | 2   | 2   | 2      | 1       | 0      | 0         | 0      | 2       | 3        | 3        | 2     |      |      |      |      |
| CO3              | 3   | 3   | 3   | 3   | 2   | 2   | 2      | 1       | 0      | 0         | 0      | 2       | 3        | 3        | 2     |      |      |      |      |
| CO4              | 3   | 3   | 3   | 3   | 2   | 2   | 2      | 1       | 0      | 0         | 0      | 2       | 3        | 3        | 2     |      |      |      |      |
| CO5              | 3   | 3   | 3   | 3   | 2   | 2   | 2      | 1       | 0      | 0         | 0      | 2       | 3        | 3        | 2     |      |      |      |      |



| Effective from Session: 2020-2021 |                                 |                    |                                 |         |      |   |   |
|-----------------------------------|---------------------------------|--------------------|---------------------------------|---------|------|---|---|
| Course Code                       | BE506                           | Title of te Course | Biochemistry & Microbiology Lab | L       | Т    | Р | С |
| Year                              | Ι                               | Semester           | Ι                               | 0       | 0    | 8 | 4 |
| Pre-Requisite                     | None                            | Co-requisite       | None                            |         |      |   |   |
| Course Objectives                 | The lab is deal of isolation, r | vith mi            | crobial                         | technic | lues |   |   |

|     | Course Outcomes                                                                                   |
|-----|---------------------------------------------------------------------------------------------------|
| CO1 | Understand the techniques of microbial cultures and the biochemical characterization of microbes. |
| CO2 | Analyze of the biomolecules using separation and purification techniques.                         |
| CO3 | Estimate the biomolecules by spectrophotometric method.                                           |

| Unit<br>No. | Title of the Unit                                                                         | Content of Unit                                            | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|
| 1           | Maintenance and Identification                                                            | Maintenance and identification of microorganisms.          | 4               | CO1          |  |  |  |  |  |  |
| 2           | Biochemical characterization                                                              | Biochemical characterization of microbes                   | 4               | CO1          |  |  |  |  |  |  |
| 3           | Analysis of pigments                                                                      | Analysis of various pigments in cyanobacteria              | 4               | CO1          |  |  |  |  |  |  |
| 4           | Growth curve                                                                              | Standardization of growth curve of different microbes      | 4               | CO1          |  |  |  |  |  |  |
| 5           | Electrophoresis                                                                           | Electrophoresis in Agarose and SDS gels                    | 4               | CO2          |  |  |  |  |  |  |
| 6           | Membrane separation                                                                       | Membrane separation of proteins                            | 4               | CO2          |  |  |  |  |  |  |
| 7           | Thin layer chromatography                                                                 | Extraction of phytochemicals and thin layer chromatography | 4               | CO2          |  |  |  |  |  |  |
| 8           | Estimation of carbohydrates                                                               | Estimation of carbohydrates-glucose and starch             | 4               | CO3          |  |  |  |  |  |  |
| 9           | Estimation of proteins         Estimation of proteins and nucleic acid                    |                                                            |                 |              |  |  |  |  |  |  |
| Referen     | ce Books:                                                                                 |                                                            |                 |              |  |  |  |  |  |  |
| 1.          | J. Jayaraman, Lab Manual in Biocher                                                       | nistry, Wiley Eastern Ltd.                                 |                 |              |  |  |  |  |  |  |
| 2.          | Bergey's Journal of Determinative B                                                       | iotechnology Edn.                                          |                 |              |  |  |  |  |  |  |
| 3.          | Collins and Lyne, Microbiological M                                                       | lethods, Butterworths, Singapore, 5 <sup>th</sup> Edn.     |                 |              |  |  |  |  |  |  |
| 4.          | 4. Plummer, An Introduction to Practical Chemistry, Tata-McGraw Hill, New Delhi, 3rd Edn. |                                                            |                 |              |  |  |  |  |  |  |
| e-Lear      | e-Learning Source:                                                                        |                                                            |                 |              |  |  |  |  |  |  |
| https://w   | https://www.youtube.com/watch?v=Et1v8EQP10U                                               |                                                            |                 |              |  |  |  |  |  |  |
| https://w   | www.youtube.com/watch?v=S7NIkBy3                                                          | 8To                                                        |                 |              |  |  |  |  |  |  |
|             | · · · · · · · · · ·                                                                       |                                                            |                 |              |  |  |  |  |  |  |

|        |     | <b>Course Articulation Matrix: (Mapping of COs with POs and PSOs)</b> |     |     |     |     |     |     |     |      |      |      |      |      |      |
|--------|-----|-----------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| PO-PSO | PO1 | PO2                                                                   | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | POQ | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| СО     | 101 | 102                                                                   | 105 | 104 | 105 | 100 | 107 | 100 | 10) | 1010 | 1011 | 1012 | 1501 | 1502 | 1505 |
| CO1    | 1   | 1                                                                     | 1   | 2   | 2   | 2   | 2   | 1   | 1   | 1    | 2    | 3    | 2    | 2    | 2    |
| CO2    | 1   | 1                                                                     | 1   | 2   | 2   | 2   | 2   | 1   | 1   | 1    | 2    | 3    | 2    | 1    | 2    |
| CO3    | 1   | 1                                                                     | 1   | 3   | 2   | 1   | 1   | 1   | 1   | 1    | 1    | 3    | 3    | 2    | 1    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: 2021-2022 |                                                |                                                                               |                                                                                                                                  |                    |                    |                     |    |  |  |  |  |  |
|-----------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|---------------------|----|--|--|--|--|--|
| Course Code                       | BE507                                          | Title of the Course                                                           | Fermentation Technology                                                                                                          | L                  | Т                  | Р                   | С  |  |  |  |  |  |
| Year                              | Ι                                              | Semester                                                                      | П                                                                                                                                | 3                  | 1                  | 0                   | 4  |  |  |  |  |  |
| Pre-Requisite                     | None                                           | Co-requisite                                                                  | None                                                                                                                             |                    |                    |                     |    |  |  |  |  |  |
| Course Objectives                 | The objective<br>heterogeneou<br>and monitorin | es of this course are to de<br>s reaction system, devel<br>ng in bioreactors. | evelop understanding of ideal and non-ideal bioreactors, intro-<br>op understanding of strategies for scale-up of bioreactor, Bu | roduce<br>uilt cor | concep<br>ncepts o | ots of<br>of contro | ol |  |  |  |  |  |

|     | Course Outcomes                                                                                                          |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CO1 | Analyze the performance of ideal bioreactors.                                                                            |  |  |  |  |  |  |  |
| CO2 | Understand the effect of catalyst porosity, size, and fluid properties on rate of reactions controlled by mass transfer. |  |  |  |  |  |  |  |
| CO3 | Determine internal and overall effectiveness factors for zero and first order reactions.                                 |  |  |  |  |  |  |  |
| CO4 | Identify suitable process instrumentation for monitoring and control of bioreactors.                                     |  |  |  |  |  |  |  |
| CO5 | Scale-up bioreactors on the basis of rule of thumbs.                                                                     |  |  |  |  |  |  |  |

| Unit<br>No.                                            | Title of the Unit                                                                                                                                                                            | Content of Unit                                                                                                                                                                                                                                                                            | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|
| 1                                                      | Analysis of Ideal<br>Bioreactors                                                                                                                                                             | The ideal batch reactor, Continuous Stirred Tank Reactor (CSTR), series of CSTRs, turbidostat, chemostat, fed batch, plug flow reactors.                                                                                                                                                   | 8               | CO1          |  |  |  |  |  |
| 2                                                      | Heterogeneous<br>Reaction Systems                                                                                                                                                            | Zero order and First order kinetics of concentration profile with reference to spherical geometry<br>and other shapes, Effectiveness factor, External and internal mass transfer, General comments on<br>heterogeneous reactions in bioprocessing.                                         | 8               | CO2          |  |  |  |  |  |
| 3                                                      | Monitoring,<br>Control and<br>Modelling of<br>Bioreactors                                                                                                                                    | Control of bioreactors, case studies; Solid state fermentation. Overview of methods for online and offline monitoring of bioreactors: bioprocess control methodologies; Analysis of alternate bioreactor configurations including cell-recycle, airlift, and immobilized-cell bioreactors. | 8               | CO3          |  |  |  |  |  |
| 4                                                      | 4 <b>Fermentative</b><br><b>Production of</b><br><b>Metabolites</b> Media for industrial fermentation; Large scale production of amylase, acetic acid, ethanol,<br>penicillin, and L-Lysine. |                                                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |
| 5                                                      | Scale-up of<br>BioreactorVarious approaches to scale-up including regime analysis and scale-down; Scale-up methods by<br>currently used rules-of-thumb viz. constant P/V, KLa etc.           |                                                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |
| Refere                                                 | nce Books:                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |
| Levens                                                 | piel, O., Chemical Reac                                                                                                                                                                      | tion Engineering, John Wiley. 2008                                                                                                                                                                                                                                                         |                 |              |  |  |  |  |  |
| Fogler,                                                | H. S. Elements of Cher                                                                                                                                                                       | nical Reaction Engineering, Prentice Hall India. 2015.                                                                                                                                                                                                                                     |                 |              |  |  |  |  |  |
| Doran                                                  | P.M., Principle of Biopr                                                                                                                                                                     | ocess Engineering. Elsevier. 2013                                                                                                                                                                                                                                                          |                 |              |  |  |  |  |  |
| Shuler                                                 | & Kargi, Bioprocess En                                                                                                                                                                       | gineering, Prentice Hall. 2001.                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |
| e-Learning Source:                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |
| https://archive.nptel.ac.in/courses/102/106/102106086/ |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |
| https://                                               | youtu.be/prmNu7b7KY                                                                                                                                                                          | c                                                                                                                                                                                                                                                                                          |                 |              |  |  |  |  |  |
| https://                                               | youtu.be/oxHLdNQrGh                                                                                                                                                                          | W                                                                                                                                                                                                                                                                                          |                 |              |  |  |  |  |  |
| https://                                               | youtu.be/nN3ZL-Hqbsc                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |

|        |     |     |     |     | Cours | e Articu | lation M | latrix: (I | Mapping | g of COs v | with POs a | and PSOs | )    |      |      |
|--------|-----|-----|-----|-----|-------|----------|----------|------------|---------|------------|------------|----------|------|------|------|
| PO-PSO | PO1 | PO2 | PO3 | PO4 | PO5   | PO6      | PO7      | PO8        | PO9     | PO10       | PO11       | PO12     | PSO1 | PSO2 | PSO3 |
| СО     | 101 | 102 | 105 | 101 | 105   | 100      | 10,      | 100        | 10)     | 1010       | 1011       | 1012     | 1501 | 1502 | 1505 |
| CO1    | 3   | 3   | 3   | 3   | 3     | 2        | 2        | 2          |         |            |            | 2        | 3    | 3    | 2    |
| CO2    | 3   | 3   | 3   | 3   | 2     | 2        | 2        | 1          |         |            |            | 1        | 3    | 3    | 2    |
| CO3    | 3   | 3   | 3   | 3   | 2     | 1        | 2        | 1          |         |            |            | 1        | 3    | 3    | 3    |
| CO4    | 3   | 3   | 3   | 3   | 3     | 2        | 2        | 2          |         |            |            | 2        | 3    | 3    | 3    |
| CO5    | 3   | 3   | 3   | 3   | 2     | 2        | 2        | 2          |         |            |            | 1        | 3    | 3    | 3    |

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD



| Effective from Session: 2022-23                                                                                                                                                                                                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |   |   |   |   |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---|---|---|---|--|--|--|--|--|
| Course Code                                                                                                                                                                                                                                      | BE512       | Title of the Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | itle of the Course Nanobiotechnology |   |   |   |   |  |  |  |  |  |
| Year                                                                                                                                                                                                                                             | Ι           | Semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | П                                    | 2 | 1 | 0 | 3 |  |  |  |  |  |
| Pre-Requisite                                                                                                                                                                                                                                    | None        | Co-requisite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | None                                 |   |   |   |   |  |  |  |  |  |
| Course Objectives                                                                                                                                                                                                                                | Use knowled | Use knowledge of nano science and mathematics to follow protocols, conduct science or engineering procedures, fobriate and use analysis and independently an |                                      |   |   |   |   |  |  |  |  |  |
| <b>Course Objectives</b> fabricate products, make conclusions about results, troubleshoot, discover and independently seek out innova rapidly changing field of papo-technology. Compile and analyze data and draw conclusions at the papo level |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |   |   |   |   |  |  |  |  |  |

|    |    | Course Outcomes                                                                                                                                    |
|----|----|----------------------------------------------------------------------------------------------------------------------------------------------------|
| CC | 01 | The students are equipped with interdisciplinary knowledge of physics, chemistry and biology in the field of nanotechnology at a single            |
|    |    | platform. The student will understand the concept of nanoscale and properties of nano materials.                                                   |
| CC | )2 | The students will acquire the knowledge of synthesis and characterization of nanomaterials for its various applications in the field of biological |
|    |    | sciences.                                                                                                                                          |
| CC | )3 | Develops the understanding of utilizing biomolecules for designing tools and equipment (diagnostic tool, biosensors, smart drug delivery           |
|    |    | systems) for various applications in food, medicine and health science.                                                                            |
| CC | )4 | Develops the ability to incorporate nanotechnology in the existing technology for developing different drug delivery systems like aerosol,         |
|    |    | inhalants injectables etc.                                                                                                                         |

| Unit<br>No.       | Title of the Unit                                                                                                                                                                                                                  | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|
| 1                 | Nanoscales                                                                                                                                                                                                                         | What is meant by Nanoscale – Nanoscale Processes – Physical and Chemical Properties of Materials in the Nanoscales - Nanoscale Measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8               | CO1          |  |  |  |  |
| 2                 | Synthesis,<br>Properties and<br>measurements of<br>nanomaterials                                                                                                                                                                   | Synthesis of Nanomaterials by Physical and Chemicals Methods- Physical Methods: Ball<br>Milling- Electrodeposition- Spray Pyrolysis- Flame Pyrolysis - DC/RF Magnetron<br>Sputtering - Molecular Beam Epitaxy (MBE). Chemical Methods: Metal Nanocrystals by<br>Reduction-Microemulsions or reverse micelles, micelle formation- Chemical Reduction-<br>Emulsions, and Dendrimers, Solvothermal Synthesis- Photochemical Synthesis -<br>Sonochemical Routes-Chemical Vapor Deposition (CVD) – Metal Oxide - Chemical Vapor<br>Deposition (MOCVD). Optical Properties – Absorption and Fluroscence – Microscopy<br>measurements – SEM – TEM - AFM and STM. Confocal and TIRF Imaging | 8               | CO2          |  |  |  |  |
| 3                 | 3         Nanobiotechnology         Properties of DNA and motor proteins – Measurements of Conductivity of DNA nanowires<br>and angular properties of motor – Protein Nanotechnology- Lipid Nanotechnology-<br>Glyconanotechnology |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |  |  |  |  |
| 4                 | Bioconjugation of<br>nanomaterials to<br>biological<br>molecules                                                                                                                                                                   | Reactive Groups on biomolecules (DNA & Proteins) - Conjugation to nanoparticles (ZnS- $Fe_3O_4$ ) - Uses of Bioconjugated Nanoparticles. Nano Drug Delivery: Various Drug Delivery Systems – Aerosol - Inhalants - Injectibles – Properties of Nanocarriers – Efficiency of the Systems.                                                                                                                                                                                                                                                                                                                                                                                            | 8               | CO4          |  |  |  |  |
| Referen           | ce Books:                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |  |  |  |  |
| 1. Nanoł<br>2004. | biotechnology: Concept                                                                                                                                                                                                             | s, Applications and Perspectives, Christof M. Niemeyer (Editor), Chad A. Mirkin (Editor), Wile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y-VCH; 1 ec     | lition,      |  |  |  |  |
| 2. Nanoł          | biotechnology: BioInspi                                                                                                                                                                                                            | red Devices and Materials of the Future by Oded Shoseyov and Ilan Levy, Humana Press; 1 edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ion 2007.       |              |  |  |  |  |
| 3. Nanoł          | biotechnology Protocols                                                                                                                                                                                                            | (Methods in Molecular Biology) by Sandra J Rosenthal and David W. Wright, Humana Press;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | edition, 20     | 005.         |  |  |  |  |
| 4. David          | S Goodsell, "Bionanot                                                                                                                                                                                                              | echnology", John Wiley & Sons, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |              |  |  |  |  |
| 5. Nanos          | systems: Molecular Mac                                                                                                                                                                                                             | chinery, Manufacturing and Computation, K E Drexler, Wiley, ISBN 0471575186.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |  |  |  |  |
| e-Lear            | ning Source:                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |  |  |  |  |

1. https://nptel.ac.in/courses/102107058

2. https://drive.google.com/file/d/1BXgG-J3LW5qDNGdMbe6iAaMoPHD3R4qf/view?usp=share\_link

|        |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |        |     |         |          |     |     |            |            |      |      |      |      |
|--------|-----|----------------------------------------------------------------|-----|--------|-----|---------|----------|-----|-----|------------|------------|------|------|------|------|
| PO-PSO |     | PO2                                                            | PO3 | PO4    | PO5 | PO6     | PO7      | POS | POQ | PO10       | PO11       | PO12 | PSO1 | PSO2 | PSO3 |
| СО     | 101 | 102                                                            | 105 | 104    | 105 | 100     | 107      | 100 | 10) | 1010       | 1011       | 1012 | 1501 | 1502 | 1305 |
| CO1    | 3   | 2                                                              | 2   | 1      | 1   | 1       | 1        | 1   |     |            |            | 3    | 3    | 3    | 2    |
| CO2    | 3   | 2                                                              | 3   | 1      | 3   | 3       | 1        | 1   |     |            |            | 3    | 3    | 3    | 2    |
| CO3    | 3   | 3                                                              | 3   | 1      | 3   | 3       | 2        | 1   |     |            |            | 2    | 2    | 2    | 2    |
| CO4    | 3   | 3                                                              | 3   | 3      | 3   | 3       | 2        | 1   |     |            |            | 3    | 1    | 1    | 3    |
|        |     |                                                                | 1   | Lam Ca |     | . 2 Mad | lamata C |     | 2 C | atomtial C | annalation |      |      |      |      |

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

| Name & | Sign | of Program | Coordinator |
|--------|------|------------|-------------|
|--------|------|------------|-------------|

Sign & Seal of HoD



| Effective from Session: 2020 | )-21                                                            |                                                                                                      |                                                                                                                                                                                                   |                               |                                 |                                |                     |
|------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|--------------------------------|---------------------|
| Course Code                  | BE509                                                           | Title of the Course                                                                                  | Genetic Enginering                                                                                                                                                                                | L                             | Т                               | Р                              | С                   |
| Year                         | Ι                                                               | Semester                                                                                             | П                                                                                                                                                                                                 | 2                             | 1                               | 0                              | 3                   |
| Pre-Requisite                | Molecular<br>Biology                                            | Co-requisite                                                                                         | NULL                                                                                                                                                                                              |                               |                                 |                                |                     |
| Course Objectives            | The course is<br>with various<br>will also be a<br>Antisense RN | s designed to make the<br>vectors and enzymes us<br>acquainted with modern<br>(A technology and RNA) | students understand the concept and basic steps in gene c<br>ed in recombinant DNA technology, transformation and sca<br>n techniques such as PCR technology, Real-Time PCR, S<br>n interference. | loning<br>reening<br>ite-dire | , to acq<br>g techni<br>ected m | uaint th<br>ques. T<br>utagene | iem<br>hey<br>esis, |

|     | Course Outcomes                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| CO1 | Learn about different enzymes used in genetic engineering for DNA manipulations.                                         |
| CO2 | To study different vectors and their characteristics                                                                     |
| CO3 | Transformation methods and their use in Genetic Engineering, creation of different gene libraries.                       |
| CO4 | Using genetic engineering for mutagenesis, gene silencing, and amplification of DNA, conceptualizes DNA finger printing. |

| Unit<br>No. | Title of the Unit                             | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Contact<br>Hrs. | Mapped<br>CO |  |  |
|-------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|
| 1           | Enzymes used in<br>Genetic                    | Enzymes used in recombinant DNA technology: Restriction endonucleases, ligases, DNA polymerases, Nucleases, Ligases, Alkaline phosphatase, Polynucleotide kinase, Reverse transcriptase, Terminal deoxynucleotidyl transferase                                                                                                                                                                                                                                                                              | 8               | CO1          |  |  |
| 2           | Engineering Basic<br>Concepts and<br>Vectors  | Concept and basic steps in gene cloning; Cloning vectors: Plasmid (pBR322, pUC series, pGEM); Phage $\lambda$ , Phage M13, Cosmids, Phagemids, Phasmids, pTi based vectors, Plant and animal viruses, Yeast vectors, Artificial chromosomes, Expression vector.                                                                                                                                                                                                                                             | 8               | CO2          |  |  |
| 3           | Methods used for<br>Genetic<br>Transformation | Transferring DNA into <i>E. coli</i> : chemical induction and electroporation; Use of <i>Agrobacterium</i> for genetic engineering in plants; Direct methods of gene transfer: Microprojectile bombardment, electroporation, microinjection.                                                                                                                                                                                                                                                                | 8               | CO3          |  |  |
| 4           | PCR-based<br>Techniques and<br>Gene silencing | Techniques in r-DNA Technology: DNA sequencing; PCR, Variants of PCR, Cloning of PCR product, RACE, Real-Time PCR; Site-directed mutagenesis; Antisense RNA technology; RNA interference; Cosuppression, Molecular markers: RFLP, RAPD, AFLP, EST. Selectable markers, Reporter genes, Preparation of probes, Colony hybridization, Southern hybridization, Northern hybridization, Dot blots, Western blotting, Public concerns related to recombinant DNA technology; Safety guidelines of rDNA research. | 8               | CO4          |  |  |
| Referen     | ce Books:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |  |  |
| 1.          | Glick, B.R. and Pasterna                      | ak, J.J. "Molecular Biotechnology" ASM Press, USA.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |  |  |
| 2.          | Glover, D.M. and Har                          | nes, B.D. "DNA cloning" IRL Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |  |  |
| 3.          | Sambrook J., Fritsch,<br>Watson "Pasambinan   | E.F., Maniatis "Molecular Cloning, A laboratory Manual" Cold Spring Harbor Laboratory, USA<br>+ DNA"                                                                                                                                                                                                                                                                                                                                                                                                        | •               |              |  |  |
| 4.          | Rastogi and Pathak "Ge                        | netic Engineering". Oxford Press                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |  |  |
| 6.          | Lodish, Berk, Matsud                          | aira, Kaiser, Krieger, Scott, Zipersky and Darnell "Molecular Cell Biology".                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |
| e-Lear      | ning Source:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |  |  |
| 1.          | 1. PCR, https://www.youtube.com/watch?v=nHi   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |  |  |
| 2.          | Southern & Northern                           | Blotting, https://www.youtube.com/watch?v=EoTq                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |  |  |

|        |     |     |     |     | Course A | Articulat | ion Matı | rix: (Map | oping of | COs with | POs and l | PSOs) |      |      |      |
|--------|-----|-----|-----|-----|----------|-----------|----------|-----------|----------|----------|-----------|-------|------|------|------|
| PO-PSO | PO1 | PO2 | PO3 | PO4 | PO5      | PO6       | PO7      | PO8       | POQ      | PO10     | PO11      | PO12  | PSO1 | PSO2 | PSO3 |
| СО     | 101 | 102 | 105 | 104 | 105      | 100       | 107      | 108       | 109      | 1010     | 1011      | 1012  | 1301 | 1302 | 1505 |
| CO1    | 2   | 2   | 3   | 1   | 3        | 1         | 1        | 2         | 1        | 1        | 1         | 3     | 3    | 3    | 1    |
| CO2    | 2   | 2   | 2   | 2   | 3        | 2         | 1        | 1         | 2        | 1        | 2         | 3     | 3    | 3    | 1    |
| CO3    | 1   | 1   | 2   | 1   | 3        | 1         | 2        | 2         | 1        | 1        | 1         | 2     | 3    | 3    | 1    |
| CO4    | 1   | 1   | 1   | 1   | 3        | 1         | 3        | 3         | 2        | 1        | 1         | 2     | 3    | 3    | 3    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: 2020-2021 |             |                                                                                                      |                    |   |   |   |   |  |  |
|-----------------------------------|-------------|------------------------------------------------------------------------------------------------------|--------------------|---|---|---|---|--|--|
| Course Code                       | BE510       | Title of the Course                                                                                  | ENZYME ENGINEERING | L | Т | Р | С |  |  |
| Year                              | Ι           | Semester                                                                                             | Π                  | 3 | 1 | 0 | 4 |  |  |
| Pre-Requisite                     | None        | Co-requisite                                                                                         | None               |   |   |   |   |  |  |
| Course Objectives                 | To understa | To understand the importance of enzymes and apply the knowledge to improve the enzymes and enzymatic |                    |   |   |   |   |  |  |
| Course Objectives                 | processes.  |                                                                                                      |                    |   |   |   |   |  |  |

|     | Course Outcomes                                                                                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Gain knowledge about structure, properties of enzymes, enzyme types Understand the process of industrial enzyme production and applications in various sectors. |
| CO2 | Analyse the mathematical derivations to understand enzyme reaction kinetics and types of inhibition.                                                            |
| CO3 | Apply engineering principles in understanding immobilized enzyme reactions.                                                                                     |
| CO4 | Evaluate and design different enzyme reactors and apply research-based knowledge to design solutions for large scale                                            |
|     | applications.                                                                                                                                                   |
| CO5 | Understand the concept of enzymatic reactions in organic media and evaluate applied research about enzymes and present the                                      |
|     | search of recent studies about enzymes                                                                                                                          |

| Unit<br>No. | Title of the Unit                                                                                           | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                              | Contact<br>Hrs. | Mapped<br>CO |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|
| 1           | Introduction                                                                                                | Enzymes: Introduction, Allosteric enzymes, Ribozymes, Abzymes; Applications in industrial, medical, analytical, chemical, pharmaceutical and food sectors; Enzyme isolation and purification methods.                                                                                                                                                                                                                        | 8               | CO1          |  |  |
| 2           | Enzyme kinetics                                                                                             | Enzyme kinetics of free enzymes: Michaelis-Menten kinetics, kinetics for reversible reactions; Effect of various types of inhibition, evaluation of kinetic parameters; Multi-<br>substrate reactions and their kinetics.                                                                                                                                                                                                    | 8               | CO2          |  |  |
| 3           | Immobilized<br>Enzyme                                                                                       | Immobilized enzymes: Methods of enzyme immobilization, factors affecting<br>immobilized enzymes, kinetics of immobilized enzymes, internal and external mass<br>transfer effects in immobilized-enzyme reactors, intra-particle diffusion, micro-<br>environmental effects on enzyme kinetics, enzyme deactivation, operational stability<br>and optimization, general design considerations for the immobilization process. | 8               | CO3          |  |  |
| 4           | Enzyme Reactors                                                                                             | Design and Analysis of enzyme reactors: Types of Reactors (Modes of operation),<br>Basic design of enzyme reactors under Ideal conditions (Batch and continuous mixed<br>reactors, continuous packed bed reactor under plug flow regime), Effect of Diffusional<br>restrictions on Enzyme reactor design and performance in heterogeneous systems.<br>Parameters affecting the performance of enzyme reactors.               | 8               | CO4          |  |  |
| 5           | Enzyme<br>Improvement                                                                                       | Enzyme reactions in organic media; Study cases of Enzymatic Processes: (any one enzyme/biocatalyst like Proteases, Acylases, Lipases, Oxidoreductases, Aldolases, Amylases etc. to mention a few (Recommended topics to be covered-Applications of the biocatalyst, sources and production of biocatalyst, structure and mechanism, improvement of the biocatalysis reaction)).                                              | 8               | CO5          |  |  |
| Referen     | ce Books:                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |  |  |
| 1. P        | almer, T., Bonner, P.                                                                                       | L. (2007). Enzymes: Biochemistry, Biotechnology, Clinical Chemistry. United Kingdo                                                                                                                                                                                                                                                                                                                                           | m: Elsevier     | r Science.   |  |  |
| 2. Il       | 2. Illanes, A. (2008). Enzyme Biocatalysis: Principles and Applications. Netherlands: Springer Netherlands. |                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |  |  |
| e-Lear      | rning Source:                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |  |  |

1. https://nptel.ac.in/courses/102103097

|        |     |     |     |     | Course A | Articulat | ion Matı | rix: (Map | ping of | COs with | POs and I | PSOs) |      |      |      |
|--------|-----|-----|-----|-----|----------|-----------|----------|-----------|---------|----------|-----------|-------|------|------|------|
| PO-PSO | PO1 | PO2 | PO3 | PO4 | PO5      | PO6       | PO7      | POS       | POQ     | PO10     | PO11      | PO12  | PSO1 | PSO2 | PSO3 |
| СО     | 101 | 102 | 105 | 104 | 105      | 100       | 10/      | 100       | 109     | 1010     | 1011      | 1012  | 1501 | 1502 | 1505 |
| CO1    | 3   | 2   | 2   | 2   |          | 1         | 1        |           |         |          |           | 3     | 3    | 3    | 2    |
| CO2    | 3   | 3   | 1   | 3   |          |           |          |           |         |          |           | 2     | 3    | 3    | 2    |
| CO3    | 3   | 3   | 3   | 3   |          | 2         | 2        |           |         |          |           | 2     | 3    | 3    | 2-   |
| CO4    | 3   | 3   | 3   | 3   | 1        | 3         | 2        |           |         |          |           | 3     | 3    | 3    | 3    |
| CO5    | 3   | 3   | 3   | 3   | 2        | 2         | 2        | 1         | 2       | 2        |           | 3     | 3    | 3    | 2-   |

| Name & Sign of Program Coordinator     | Sign & Seal of HoD |
|----------------------------------------|--------------------|
| i unit to Sign of I togram Coordinator |                    |



| Effective from Session: 2022 | Effective from Session: 2022-23                                                                                     |                     |                       |   |   |   |   |
|------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|---|---|---|---|
| Course Code                  | BE508                                                                                                               | Title of the Course | Downstream Processing | L | Т | Р | С |
| Year                         | Ι                                                                                                                   | Semester            | Π                     | 2 | 1 | 0 | 3 |
| Pre-Requisite                |                                                                                                                     | Co-requisite        |                       |   |   |   |   |
| Course Objectives            | To impart to the students the knowledge of various separation and purification techniques and enable them to design |                     |                       |   |   |   |   |
| Course Objectives            | these process                                                                                                       | es.                 |                       |   |   |   |   |

|     | Course Outcomes                                                                                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | The students will learn the different recovery process their principles and methodology, how to retrieve the desirable product in bioprocess |
|     | industries.                                                                                                                                  |
| CO2 | The students will get proper knowledge about the purification of desirable product from crude with the help of different purification        |
|     | techniques and methods in industrial level.                                                                                                  |
| CO3 | The students will learn the new and recent techniques used for bioseperation with their principle and mode of operation.                     |
| CO4 | The students will get proper knowledge about how to handle and treatment of wastes discarded by bio-industries, what are the techniques,     |
|     | reactors their mode of operation.                                                                                                            |

| Unit<br>No. | Title of the Unit                                                                          | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|
|             | Introduction to                                                                            | Overview of a bioprocess including upstream and downstream processing; Intracellular and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |              |  |  |  |  |  |  |
|             | Bioprocess and                                                                             | extracellular product recovery: cell disruption and extraction. Primary isolation methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |  |  |  |
| 1           | Primary isolation                                                                          | including separation of particulate by filtration, centrifugation, settling, sedimentation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8               | CO1          |  |  |  |  |  |  |
|             | methods decanting, microfiltration and membrane-based method; Solvent extraction, sorption |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |  |
|             |                                                                                            | precipitation, ultrafiltration and Reverse osmosis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |  |
| 2           | Purification                                                                               | Fractional precipitation, electrophoresis, chromatography, adsorption, product polishing,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o               | CON          |  |  |  |  |  |  |
| 2           | methods                                                                                    | crystallization, drying.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0               | 02           |  |  |  |  |  |  |
| 2           | New and Emerging                                                                           | Pervaporation, Super liquid extraction, Foam based separation, Lyophilization, High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0               | CO2          |  |  |  |  |  |  |
| 3           | techniques                                                                                 | Throughput Screening.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8               | 005          |  |  |  |  |  |  |
| 4           | Effluent                                                                                   | Aerobic and anaerobic water treatment processes: activated sludge, trickling filter, fluidized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0               | CO4          |  |  |  |  |  |  |
| 4           | Treatment                                                                                  | expanded bed reactor, Upflow anaerobic sludge blanket reactor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0               | 04           |  |  |  |  |  |  |
| Referen     | ce Books:                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |  |
| 1. Roge     | r G. Harrison, Paul Tod                                                                    | d, Scott R. Rudge, Demetri P. Petrides, Bioseparations Science and Engineering, Oxford University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sity Press.     |              |  |  |  |  |  |  |
| 2. B.Shi    | vshankar, Bioseparation                                                                    | s: Priniples and Techniques, Eastern Economy Edition, PHI Learning Pvt. Ltd., Publishing Hous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e, New Dell     | ni, 2012     |  |  |  |  |  |  |
| 3. Biose    | paration & bioprocessin                                                                    | g (2nd Ed.) 2-Volume set, Ed Subramanian Ganapathy, Wiley-VCH, (09-2007).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |  |  |  |  |  |  |
| 4. P.A. I   | Belter, E.L. Cussler and                                                                   | Wei-Shou Hu., Bioseparations-Downstream Processing for Biotechnology, WileyInterscience Processing for Biotechnology, WileyInt | ublication, 1   | 988.         |  |  |  |  |  |  |
| 5. Separ    | ation and purification te                                                                  | chniques in biotechnology, Fredreich Dechow, 1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              |  |  |  |  |  |  |
| e-Lear      | ning Source:                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |  |
| https://    | /drive.google.com/file/d                                                                   | /1aC-qEL_ldNEJb61WcrE0aibMRSPC2v1K/view <sup>2</sup> usp=share_link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |  |

|        |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |      |      |      |      |      |      |
|--------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| PO-PSO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | POS | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| СО     | 101 | 102                                                            | 105 | 104 | 105 | 100 | 107 | 100 | 10) | 1010 | 1011 | 1012 | 1501 | 1502 | 1505 |
| CO1    | 3   | 3                                                              | 3   | 2   | 2   | 1   | 2   | 1   | 1   | 1    | 1    | 1    | 3    | 2    | 2    |
| CO2    | 3   | 2                                                              | 2   | 2   | 2   | 1   | 2   | 1   | 1   | 1    | 1    | 1    | 3    | 2    | 2    |
| CO3    | 1   | 2                                                              | 3   | 2   | 2   | 2   | 1   | 1   | 1   | 1    | 1    | 1    | 2    | 2    | 2    |
| CO4    | 3   | 2                                                              | 3   | 3   | 2   | 3   | 3   | 2   | 1   | 1    | 1    | 2    | 3    | 2    | 3    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: 2022-23 |                                                             |                                      |                                                              |        |          |       |      |  |  |  |  |
|---------------------------------|-------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|--------|----------|-------|------|--|--|--|--|
| Course Code                     | BE513                                                       | Title of the Course                  | he Course Plant Cell Technology                              |        |          |       |      |  |  |  |  |
| Year                            | Ι                                                           | Semester                             | П                                                            | 2      | 1        | 0     | 3    |  |  |  |  |
| Pre-Requisite                   | None                                                        | Co-requisite                         | None                                                         |        |          |       |      |  |  |  |  |
|                                 | ake students aware of the basic concepts of plant tissue of | nt tissue culture. It deals with the |                                                              |        |          |       |      |  |  |  |  |
| Course Objectives               | initiation and                                              | maintenance of differe               | nt types of cultures and genetic engineering techniques. The | ne con | cepts of | molec | ular |  |  |  |  |
|                                 | markers and t                                               | their applications are als           | o being taught.                                              |        |          |       |      |  |  |  |  |

|     | Course Outcomes                                                                                                                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Give an account of the nutritional components of a plant tissue culture media. Discuss the concept of totipotency and regeneration of plants by  |
|     | micropropagation via organogenesis and somatic embryogenesis.                                                                                    |
| CO2 | Write note on types and applications of different cultures: callus, suspension, meristem, protoplast, anther, pollen and ovule. Discuss in vitro |
|     | production of secondary metabolites by plant cell cultures using different techniques.                                                           |
| CO3 | Describe biological and physical methods of genetic transformation for the production of transgenic plants and discuss the social, moral and     |
|     | ethical considerations with respect to safety of genetic engineering.                                                                            |
| CO4 | Write about different types of molecular markers and their applications.                                                                         |

| Unit<br>No. | Title of the Unit                                               | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contact<br>Hrs. | Mapped<br>CO |
|-------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Introduction to<br>Plant tissue culture                         | Totipotency; Regeneration of plants; Different types of culture media; Nutritional components of culture media; Regulation of cell differentiation; Types of culture: callus, suspension, organogenesis, somatic embryogenesis, micropropagation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8               | CO1          |
| 2           | Types of plant cell cultures                                    | Isolation, purification and culture of protoplasts; Protoplast fusion and somatic hybridization; Selection systems for somatic hybrids / cybrids; Production of haploid plants: anther, pollen culture and ovule culture; Induction of mutation; Somaclonal variation; Production of disease free plants (meristem culture).                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8               | CO2          |
| 3           | In vitro Production<br>of secondary<br>metabolites              | Production of secondary metabolites by plant cell cultures; batch and continuous cultures.<br>Biotransformation using plant cell cultures; Bioreactor system and models for mass<br>cultivation of plant cells, hairy root culture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8               | CO3          |
| 4           | Genetic<br>transformation in<br>plants and<br>molecular markers | Genetic transformation methods for production of transgenic plants: Microprojectile<br>bombardment, microinjection and electroporation. Detailed mechanism of Agrobacterium<br>mediated genetic transformation; Applications of transgenic plants; Reporter genes;<br>Selectable markers. Genetic engineering-Safety, social, moral and ethical considerations.<br>Molecular Markers: RFLP, RAPD, AFLP, microsatellites, SCAR (sequence characterized<br>amplified regions) and SSCP (single strand conformational polymorphism).Molecular<br>Markers: RFLP maps, RAPD maps, STS, microsatellites, SCAR (sequence characterized<br>amplified regions), SSCP (single strand conformational polymorphism), AFLP, ESTs, QTL,<br>map based cloning, molecular marker assisted selection. | 8               | CO4          |
| Referen     | ce Books:                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |
| 1. Chaw     | la HS, "Plant Biotechno                                         | logy: A Practical Approach".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |              |
| 2. Slater   | A, Scott NW, Fowler M                                           | IR "Plant Biotechnology: The Genetic Manipulation of Plants".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |
| 3. Dixon    | RA, Gonzales RA, "Pl                                            | ant Cell Culture: A Practical Approach".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |
| 4. Mante    | ell SH, Matthews JA, M                                          | cKee RA, "Principles of Plant Biotechnology: An Introduction to Genetic Engineering in Plants'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |              |
| 5. Staffo   | rd A, Warren G, "Plant                                          | Cell and Tissue Culture (Biotechnology Series)".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |
| e-Lear      | ning Source:                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |
|             |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |
|             |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |              |

|        | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |     |      |      |      |      |      |      |
|--------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| PO-PSO | PO1                                                            | PO2 | PO3 |     | PO5 | PO6 | PO7 | POS | POQ | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CO     | 101                                                            | 102 | 105 | 104 | 105 | 100 | 107 | 100 | 10) | 1010 | 1011 | 1012 | 1501 | 1302 | 1305 |
| CO1    | 1                                                              | 2   | 2   | 2   | 2   | 1   | 3   |     |     |      |      | 3    | 3    | 3    | 2    |
| CO2    | 2                                                              | 3   | 3   | 2   | 2   | 2   | 2   | 2   | 2   | 2    |      | 2    | 3    | 3    | 2    |
| CO3    | 3                                                              | 2   | 2   | 2   | 3   | 3   | 2   | 2   | 1   |      |      | 2    | 2    | 2    | 2    |
| CO4    | 2                                                              | 3   | 2   | 2   | 3   | 1   | 2   | 3   | 2   | 2    |      | 2    | 1    | 1    | 3    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: |                                                                                                                                                                     |                     |      |   |   |   |   |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|---|---|---|---|--|--|--|--|
| Course Code             | BE514                                                                                                                                                               | Title of the Course | L    | Т | Р | С |   |  |  |  |  |
| Year                    | Ι                                                                                                                                                                   | Semester            | П    | 2 | 1 | 0 | 3 |  |  |  |  |
| Pre-Requisite           | None                                                                                                                                                                | Co-requisite        | None |   |   |   |   |  |  |  |  |
| Course Objectives       | To equip students with the know-how of various pharmaceutical products and processes, and also with the applications of biotechnology in the pharmaceutical sector. |                     |      |   |   |   |   |  |  |  |  |

|     | Course Outcomes                                                                                                                          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Describe the general principles of drug development and enhance learning of economic and regulatory guidelines related to pharmaceutical |
|     | biotechnology.                                                                                                                           |
| CO2 | Discuss the various aspects of drug action, metabolism and pharmacokinetics.                                                             |
| CO3 | Explain the rationale behind drug design and types of chemotherapeutics viz., chemotherapy for infectious diseases and cancer.           |
| CO4 | Discuss the importance of Biopharmaceuticals and drug interactions vis a vis safety and efficacy of the drug.                            |
| CO5 | Understand the principles of drug manufacture and preparation of various formulations. Awareness about GMP guidelines and usage of       |
|     | Analytical methods and other tests used in drug manufacture and quality management of Drugs.                                             |

| Unit<br>No. | Title of the Unit                                        | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contact<br>Hrs. | Mapped<br>CO |
|-------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Introduction                                             | Pharmaceutical industry & development of drugs; types of therapeutic agents and their uses; economics and regulatory aspects.                                                                                                                                                                                                                                                                                                                                          | 8               | CO1          |
| 2           | Drug Action,<br>Metabolism and<br>Pharmacokinetics       | Mechanism of drug action; Physico-chemical principles of drug metabolism; radioactivity; pharmacokinetics.                                                                                                                                                                                                                                                                                                                                                             | 8               | CO2          |
| 3           | Chemotherapeutics                                        | Chemotherapy for bacterial, fungal, viral infections, drugs acting on protozoal infection, malarial infection and helminth parasites. Cancer chemotherapy, Drug interactions.                                                                                                                                                                                                                                                                                          | 8               | CO3          |
| 4           | Principles of Drug<br>Manufacture;<br>Biopharmaceuticals | Compressed tablets; dry and wet granulation; slugging or direct compression; tablet presses; coating of tablets; capsule preparation; oral liquids — vegetable drugs — topical applications; preservation of drugs; analytical methods and other tests used in drug manufacture; packaging techniques; quality management; GMP. BIOPHARMACEUTICALS: Various categories of therapeutics like vitamins, laxatives, analgesics, contraceptives, hormones and biologicals. | 8               | CO4, CO5     |
| 5           |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |
| Referen     | nce Books:                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |
| 1.          | Gareth Thomas. Medic                                     | inal Chemistry. An introduction. John Wiley. 2000.                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |              |
| 2.          | Katzung B.G. Basic and                                   | d Clinical Pharmacology, Prentice Hall of Intl. 1995                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |              |
|             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |
|             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |
| e-Lea       | rning Source:                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |
| 1. h        | ttps://iopscience.iop.org/l                              | book/mono/978-0-7503-1299-8                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |              |
| 2. h        | ttps://www.ncbi.nlm.nih.                                 | gov/pmc/articles/PMC3525971/                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |              |
|             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |              |

|        |     |     |     | (   | Course A | rticulat | ion Mat | rix: (Maj | pping of | COs with | POs and | PSOs) |      |      |      |
|--------|-----|-----|-----|-----|----------|----------|---------|-----------|----------|----------|---------|-------|------|------|------|
| PO-PSO | PO1 | PO2 | PO3 | PO4 | PO5      | PO6      | PO7     | POS       | POQ      | PO10     | PO11    | PO12  | PSO1 | PSO2 | PSO3 |
| СО     | 101 | 102 | 105 | 104 | 105      | 100      | 107     | 100       | 10)      | 1010     | 1011    | 1012  | 1501 | 1502 | 1505 |
| CO1    | 3   | 2   | 1   |     | 2        |          |         |           | 2        |          |         | 3     | 3    | 3    | 3    |
| CO2    | 3   | 2   | 3   | 3   | 3        |          |         |           |          |          |         | 3     | 3    | 3    | 3    |
| CO3    | 3   | 2   | 3   | 3   | 3        |          |         |           | 1        |          |         | 3     | 3    | 3    | 3    |
| CO4    | 3   | 3   | 3   | 2   | 2        |          |         |           |          |          |         | 3     | 3    | 3    | 3    |
| CO5    | 3   | 3   | 3   | 2   | 2        |          |         |           | 2        |          |         | 3     | 3    | 3    | 3    |

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD



| Effective from Session: 2021-2022                                                                                                |                 |                           |                        |   |   |   |   |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|------------------------|---|---|---|---|
| Course Code                                                                                                                      | BE515           | Title of the Course       | Bioreactor Engineering | L | Т | Р | С |
| Year                                                                                                                             | Ι               | Semester                  | Π                      | 3 | 1 | 0 | 4 |
| Pre-Requisite                                                                                                                    | None            | Co-requisite              | None                   |   |   |   |   |
| <b>Course Objectives</b> The objective of the course is to develop the concepts of ideal and non- ideal bioreactor design, resid |                 |                           |                        |   |   |   |   |
| U U                                                                                                                              | distribution in | n ideal and non-ideal bio | preactors.             |   |   |   |   |

|            | Course Outcomes                                                                           |
|------------|-------------------------------------------------------------------------------------------|
| CO1        | Understand the design of equipment to maintain sterility in biochemical reactors.         |
| CO2        | Analyze reaction kinetics in ideal bioreactors                                            |
| CO3        | Understand the design of unconventional bioreactors.                                      |
| <b>CO4</b> | Understand the concept of residence time distribution in ideal and non-ideal bioreactors. |
| CO5        | Understand cost estimation process biochemical reactors                                   |

| Unit<br>No.    | Title of the Unit                                                                                                                                                                                                                                                                                                                                                                         | Content of Unit                                                                | Contact<br>Hrs. | Mapped<br>CO |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------|--------------|--|--|
| 1              | Introduction to reactor<br>designGeneral design information; Design considerations for maintaining sterility of process<br>streams and process equipments; piping and instrumentation; materials of construction for<br>bioprocess plants. Flow injection analysis for measurement of substrates, product and other<br>metabolites.                                                       |                                                                                |                 |              |  |  |
| 2              | 2 Analysis of Reactors Bioreactors for submerged liquid fermentation of microbial cells in: batch reactors -<br>Calculation of batch time, Non-ideality; in semi-continuous reactors; in continuous reactors –<br>PFTR, CSTR; and Combination of reactors.                                                                                                                                |                                                                                |                 |              |  |  |
| 3              | Design of<br>unconventional<br>BioreactorsDesign and analysis of Packed Bed Bioreactor, Airlift Bioreactor, Hollow Fiber Bioreactor,<br>Plant Cell Bioreactor, Mammalian Cell Bioreactor, and bioreactors for solid state<br>fermentation.                                                                                                                                                |                                                                                |                 |              |  |  |
| 4              | 4Introduction to<br>Residence Time<br>DistributionResidence Time Theory; Residence Time Models: Ideal Reactors and Reactor Combinations,<br>Hydrodynamic Models; Drawbacks of Classical RTD measurements; Transient behavior in<br>bioreactor. Capital Cost Estimating: Components of Capital Cost, Working Capital;<br>Estimating Purchased Equipment Costs; Estimating Installed Costs. |                                                                                |                 |              |  |  |
| Refere         | nce Books:                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                 |              |  |  |
| Panda          | , Tapobrata. Bioreactors: A                                                                                                                                                                                                                                                                                                                                                               | Analysis and Design. Tata McGraw Hill, 2011.                                   |                 |              |  |  |
| Moser          | , Anton, Bioprocess Tech                                                                                                                                                                                                                                                                                                                                                                  | nology: Kinetics and Reactors. Springer Verlag, 1988.                          |                 |              |  |  |
| Bailey         | J.E. & Ollis, D.F. Bioche                                                                                                                                                                                                                                                                                                                                                                 | mical Engineering Fundamentals, 2nd ed., McGraw Hill, 1986.                    |                 |              |  |  |
| Lee, Ja        | ames M. Biochemical Eng                                                                                                                                                                                                                                                                                                                                                                   | ineering, PHI, USA.                                                            |                 |              |  |  |
| Atkins         | on, Handbook of Bioreac                                                                                                                                                                                                                                                                                                                                                                   | tors, Blanch, H.W. Clark, D.S. Biochemical Engineering, Marcel Decker, 1999.   |                 |              |  |  |
| Max S<br>1991. | . Peters and Klaus, D. T                                                                                                                                                                                                                                                                                                                                                                  | immerhaus, Plant Design and Economics for Chemical Engineers, 4th Edition, McG | raw Hill E      | Book Co.,    |  |  |
| e-Lea          | arning Source:                                                                                                                                                                                                                                                                                                                                                                            |                                                                                |                 |              |  |  |
| https://       | onlinecourses.nptel.ac.in/noc                                                                                                                                                                                                                                                                                                                                                             | 22_bt19/preview                                                                |                 |              |  |  |
| https://       | https://youtu.be/prmNu7b7KYc                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                 |              |  |  |
| https://       | https://youtu.be/oxHLdNQrGhw                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                 |              |  |  |
| https://       | https://youtu.be/nN3ZL-Hqbsc                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                 |              |  |  |

|        |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |      |      |      |      |      |      |
|--------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| PO-PSO | PO1 | PO2                                                            | PO3 | PO/ | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| СО     | 101 | 102                                                            | 105 | 104 | 105 | 100 | 10/ | 100 | 10) | 1010 | 1011 | 1012 | 1501 | 1502 | 1505 |
| CO1    | 3   | 3                                                              | 3   | 3   | 3   | 1   | 2   | 1   |     |      |      | 2    | 3    | 3    | 2    |
| CO2    | 3   | 3                                                              | 3   | 3   | 2   | 2   | 2   | 1   |     |      |      | 2    | 3    | 3    | 2    |
| CO3    | 3   | 3                                                              | 3   | 3   | 2   | 2   | 2   | 1   |     |      |      | 2    | 3    | 3    | 2    |
| CO4    | 3   | 3                                                              | 3   | 3   | 2   | 2   | 2   | 1   |     |      |      | 2    | 3    | 3    | 2    |
| CO5    | 3   | 3                                                              | 3   | 3   | 2   | 2   | 2   | 1   |     |      |      | 2    | 3    | 3    | 2    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session:                                                                                                                   |                        |                                                                                  |                                                             |      |           |          |      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|------|-----------|----------|------|--|--|
| Course Code                                                                                                                               | DE511                  | <b>PE511 Title of the Course</b> Fermentation Technology and Genetic Engineering |                                                             | т    | т         | D        | C    |  |  |
| Course Coue                                                                                                                               | DESII                  | The of the Course                                                                | Lab                                                         |      | 1         | L        | C    |  |  |
| Year                                                                                                                                      | Ι                      | Semester                                                                         | Π                                                           | 0    | 0         | 6        | 3    |  |  |
| Pre-Requisite                                                                                                                             | None                   | Co-requisite                                                                     | None                                                        |      |           |          | l    |  |  |
|                                                                                                                                           | The lab is d           | esigned to train the stu                                                         | idents to use the microbial cells/ culture for fermentative | prod | uction of | of valua | ıble |  |  |
| <b>Course Objectives</b> products at the lab scale as well as industrial scale and also use the molecular biology techniques for advanced |                        |                                                                                  |                                                             |      |           |          |      |  |  |
|                                                                                                                                           | engineering practical. |                                                                                  |                                                             |      |           |          |      |  |  |

|     | Course Outcomes                                                                                                                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Perform Immobilization of whole cells and enzymes.                                                                                   |
| CO2 | Demonstrate the fermentative production of organic acid/ alcohol/ enzyme. Design experiment for scale-up of fermentation parameters. |
| CO3 | Ability to isolate plasmid/ phage and plant/ animal (genomic) DNA, quantify and visualize DNA on gels, amplify DNA (using PCR).      |
|     | Demonstrate the use of various molecular markers to study biodiversity.                                                              |
| CO4 | Prepare Competent cells and carry out experiments related to transformation, ligation and screening of transformants.                |
| CO5 | Demonstrate Blotting Techniques like Southern/ Northern/ Western Blot Techniques and apply them in various sectors of Biotechnology. |

| Unit<br>No.                                                                                        | Title of the Unit                                                          | Content of Unit                                                                                                              | Contact<br>Hrs. | Mapped<br>CO |  |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|
| 1                                                                                                  | Cell Immobilization                                                        | Immobilization (calcium alginate/ polyacrylamide/glutaraldehyde) of whole cells and enzymes.                                 | 3               | CO1          |  |  |
| 2                                                                                                  | Bioproduction                                                              | Organic acid/ alcohol/ enzyme production through fermentation, estimation of product,<br>its separation and its purification |                 | CO2          |  |  |
| 3                                                                                                  | Fermentor                                                                  | Design and scale-up of fermentation parameters                                                                               | 3               | CO2          |  |  |
| 4                                                                                                  | <b>DNA Isolation</b>                                                       | Isolation of plasmid/ phage and plant/ animal (genomic) DNA.                                                                 | 3               | CO3          |  |  |
| 5                                                                                                  | Electrophoresis                                                            | Agarose gel electrophoresis, visualization of DNA on gels and analysis of isolated DNA.                                      | 3               | CO3          |  |  |
| 6                                                                                                  | DNA amplification                                                          | Amplification of DNA (using PCR) and restriction digestion.                                                                  | 3               | CO3          |  |  |
| 7                                                                                                  | RAPD                                                                       | RAPD to study biodiversity.                                                                                                  | 3               | CO3          |  |  |
| 8                                                                                                  | Transformation                                                             | Competent cell preparation, transformation, ligation and screening of transformants.                                         | 3               | CO4          |  |  |
| 9                                                                                                  | DNA estimation                                                             | Quantitative estimation, absorption spectra and Tm determination of DNA.                                                     |                 | CO3          |  |  |
| 10                                                                                                 | Blotting techniques                                                        | Blotting Techniques: Southern/ Northern/ Western Blot Techniques.                                                            | 3               | CO5          |  |  |
| Referen                                                                                            | ce Books:                                                                  |                                                                                                                              |                 |              |  |  |
| 1. "Mole                                                                                           | ecular Cloning: A Laborato                                                 | ry Manual"; Sambrook and Russel, 4th Edition; Cold Spring Harbor University Press.                                           |                 |              |  |  |
| 2. "Gene                                                                                           | e Cloning and DNA Analys                                                   | sis"; T. A. Brown, 7th Edition; Wiley-Blackwell Publishers.                                                                  |                 |              |  |  |
| 3. Moo-                                                                                            | Young, M. (Ed.). (1985). C                                                 | Comprehensive Biotechnology: The Principles of Biotechnology (Vol. 1).                                                       |                 |              |  |  |
| 4. Pirt, S                                                                                         | S. J. (1975). Principles of M                                              | licrobe and Cell Cultivation. Blackwell Scientific Publications.                                                             |                 |              |  |  |
| 5. Dorar                                                                                           | 5. Doran, P. M. (1995). Bioprocess Engineering Principles. Academic Press. |                                                                                                                              |                 |              |  |  |
| Skalak, R., & Chien, S. (Eds.). (1987). Handbook of Bioengineering (p. 85). New York: McGraw-Hill. |                                                                            |                                                                                                                              |                 |              |  |  |
| e-Lea                                                                                              | e-Learning Source:                                                         |                                                                                                                              |                 |              |  |  |
| https://                                                                                           | /www.vlab.co.in/                                                           |                                                                                                                              |                 |              |  |  |

Course Articulation Matrix: (Mapping of COs with POs and PSOs)

| PO-PSO | DO1 | DOJ | DO3 |         | DO5      | DO6      | PO7      | DOS       |           | PO10       | PO11       | PO12 | DSO1 | DSO2 | DSO3 |
|--------|-----|-----|-----|---------|----------|----------|----------|-----------|-----------|------------|------------|------|------|------|------|
| СО     | 101 | 102 | 105 | 104     | 105      | 100      | 107      | 108       | 109       | 1010       | 1011       | 1012 | 1301 | 1302 | 1305 |
| CO1    | 3   | 1   | 3   | 1       | 0        | 1        | 1        | 1         | 3         | 1          | 1          | 3    | 3    | 2    | 3    |
| CO2    | 2   | 2   | 3   | 2       | 3        | 2        | 1        | 1         | 3         | 1          | 1          | 3    | 3    | 2    | 3    |
| CO3    | 3   | 1   | 3   | 1       | 3        | 1        | 1        | 1         | 3         | 1          | 1          | 2    | 3    | 2    | 3    |
| CO4    | 3   | 3   | 3   | 1       | 3        | 1        | 1        | 1         | 3         | 1          | 1          | 2    | 3    | 2    | 3    |
| CO5    | 3   | 3   | 3   | 1       | 2        | 1        | 1        | 1         | 3         | 1          | 1          | 2    | 3    | 2    | 3    |
|        |     |     | 1-  | Low Cor | relation | : 2- Mod | erate Co | rrelatior | n: 3- Sub | stantial C | orrelation |      |      |      |      |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|
|                                    |                    |



| Effective from Session: 2020 | Effective from Session: 2020-21 |                                                     |                                                                                                                        |                 |                 |         |      |
|------------------------------|---------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|---------|------|
| Course Code                  | BE 516                          | Title of the Course                                 | Applied Microbiology and Biotechnology                                                                                 | L               | Т               | Р       | С    |
| Year                         | Ι                               | Semester                                            | П                                                                                                                      | 2               | 1               | 0       | 0    |
| Pre-Requisite                | None                            | Co-requisite                                        | None                                                                                                                   |                 |                 |         |      |
| Course Objectives            | The course l<br>advanced know   | nelps in recollecting so<br>wledge of various recer | ome basic but very important concepts in microbiology<br>at developments at industrial level in microbiology and biote | and b<br>chnole | iotechn<br>ogy. | ology v | with |

|     | Course Outcomes                                                                                                                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | The students will learn about the basics microbial diversity and its genetic system                                                  |
| CO2 | The students will learn about the useful microbial products and its processing. By gaining the knowledge of microbial production and |
|     | processing, students may get an idea to develop their own ventures and become entrepreneurs                                          |
| CO3 | The students will learn about the Good Manufacturing Practices (GMP) and Good Laboratory Practices (GLP) in pharmaceutical industry. |
| CO4 | The students will learn about the principle of fermentation technology and reactor design                                            |

| Unit<br>No.                                                    | Title of the Unit                                     | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |
|----------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|
| 1                                                              | Types of<br>microorganisms                            | Structure and genetic system of viruses and bacteria, Actinomycetes, fungi, Cyanobacteria and algae, Criteria used in the classification of microorganisms: morphology, cytology, genetics, host specialization, serology.                                                                                                                                                                                                                                                                                                                               | 8               | CO1          |  |  |  |  |  |
| 2                                                              | Modern trends in<br>microbial<br>production           | Modern trends in microbial production of bioplastics (PHB, PHA), bioinsectices (thuricide),<br>biopolymer (dextran, alginate, Xanthan, pullulan), Biofertilizers (Nitrogen fixer/Phosphate<br>Solubilizers/siderophore producers), Single Cell Protein, micro algae as – food – feed and<br>colourant. Potential Application of Spirulina arthrospira as a nutritional and therapeutic<br>supplement in health management.                                                                                                                               |                 |              |  |  |  |  |  |
| 3                                                              | Pharmaceutical<br>Microbiology                        | rmaceutical<br>robiologyAntibiotics and synthetic antimicrobial agents, Mechanism of action of antibiotics (inhibitors<br>of cell wall synthesis, nucleic acid and protein synthesis). Bacterial resistance to antibiotics.<br>Microbial contamination and spoilage of pharmaceutical products, Good Manufacturing<br>Practices (GMP) and Good Laboratory Practices (GLP) in pharmaceutical industry.8                                                                                                                                                   |                 |              |  |  |  |  |  |
| 4                                                              | Industrial<br>microbes and their<br>products          | A brief idea about the products obtained from microbes, biology of industrial microorganisms such as Streptomyces, yeasts, <i>Spirulina</i> and <i>Penicillium</i> , Basic principle of fermentation technology, Overview of fermenter design, factors governing the chemical and biological aspects in a bioreactor, commercial production of penicillin, ethanol, vinegar, vitamin B12, Protease, citric acid and glutamic acid from microbial sources–production of commercially useful non-microbial products produced through recombinant microbes. | 8               | CO4          |  |  |  |  |  |
| Reference Books:                                               |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |  |  |  |  |  |
| 1.                                                             | 1. Prescott, Harley and Klevin; Microbiology; 2 nded. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |  |  |  |  |  |
| 2. Microbiology, Peleczar, TMH Publication                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |  |  |  |  |  |
| 3. Pirt SJ, "Principles of Microbe and Cell Cultivation        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |  |  |  |  |  |
| 4. Murray Moo-Young, Comprehensive Biotechnology, Vol. 1& III. |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |  |  |  |  |  |
| e-Learning Source:                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |              |  |  |  |  |  |

|        | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |     |      |      |      |      |      |      |
|--------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| PO-PSO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| СО     | 101                                                            | 102 | 105 | 104 | 105 | 100 | 107 | 100 | 10) | 1010 | 1011 | 1012 | 1501 | 1502 | 1505 |
| CO1    | 2                                                              | 2   | 1   | 1   |     | 1   | 2   | 1   | 1   |      |      | 3    | 3    | 2    | 1    |
| CO2    | 2                                                              | 2   | 1   | 2   |     | 1   | 2   | 1   | 1   |      |      | 3    | 3    | 2    | 1    |
| CO3    | 2                                                              | 2   | 1   | 1   |     | 1   | 2   | 1   | 1   |      |      | 3    | 2    | 2    | 1    |
| CO4    | 2                                                              | 2   | 1   | 1   |     | 1   | 2   | 1   | 1   |      |      | 3    | 3    | 2    | 1    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|